Skip to content

Elements

Elements in orders have two representations: they can be viewed as elements in the Zn giving the coefficients wrt to the order basis where they are elements in. On the other hand, as every order is in a field, they also have a representation as number field elements. Since, asymptotically, operations are more efficient in the field (due to fast polynomial arithmetic) than in the order, the primary representation is that as a field element.

Creation

Elements are constructed either as linear combinations of basis elements or via explicit coercion. Elements will be of type AbsNumFieldOrderElem, the type if actually parametrized by the type of the surrounding field and the type of the field elements. E.g. the type of any element in any order of an absolute simple field will be AbsSimpleNumFieldOrderElem

# AbsNumFieldOrderType.
julia
  (O::NumFieldOrder)(a::NumFieldElem, check::Bool = true) -> NumFieldOrderElem

Given an element a of the ambient number field of O, this function coerces the element into O. It will be checked that a is contained in O if and only if check is true.

source

julia
  (O::NumFieldOrder)(a::NumFieldOrderElem, check::Bool = true) -> NumFieldOrderElem

Given an element a of some order in the ambient number field of O, this function coerces the element into O. It will be checked that a is contained in O if and only if check is true.

source

julia
  (O::NumFieldOrder)(a::IntegerUnion) -> NumFieldOrderElem

Given an element a of type ZZRingElem or Integer, this function coerces the element into O.

source

julia
  (O::AbsNumFieldOrder)(arr::Vector{ZZRingElem})

Returns the element of O with coefficient vector arr.

source

julia
  (O::AbsNumFieldOrder)(arr::Vector{Integer})

Returns the element of O with coefficient vector arr.

source


Basic properties

# parentMethod.
julia
parent(a::NumFieldOrderElem) -> NumFieldOrder

Returns the order of which a is an element.

source


# elem_in_nfMethod.
julia
elem_in_nf(a::NumFieldOrderElem) -> NumFieldElem

Returns the element a considered as an element of the ambient number field.

source


# coordinatesMethod.
julia
coordinates(a::AbsNumFieldOrderElem) -> Vector{ZZRingElem}

Returns the coefficient vector of a with respect to the basis of the order.

source


# discriminantMethod.
julia
discriminant(B::Vector{NumFieldOrderElem})

Returns the discriminant of the family B of algebraic numbers, i.e. det((tr(B[i]B[j]))i,j)2.

source

julia
discriminant(E::EllipticCurve) -> FieldElem

Return the discriminant of E.

source

julia
discriminant(C::HypellCrv{T}) -> T

Compute the discriminant of C.

source

julia
discriminant(O::AlgssRelOrd)

Returns the discriminant of O.

source


# ==Method.
julia
==(x::NumFieldOrderElem, y::NumFieldOrderElem) -> Bool

Returns whether x and y are equal.

source


Arithmetic

All the usual arithmetic operatinos are defined:

  • -(::NUmFieldOrdElem)

  • +(::NumFieldOrderElem, ::NumFieldOrderElem)

  • -(::NumFieldOrderElem, ::NumFieldOrderElem)

  • *(::NumFieldOrderElem, ::NumFieldOrderElem)

  • ^(::NumFieldOrderElem, ::Int)

  • mod(::AbsNumFieldOrderElem, ::Int)

  • mod_sym(::NumFieldOrderElem, ::ZZRingElem)

  • powermod(::AbsNumFieldOrderElem, ::ZZRingElem, ::Int)

Miscellaneous

# representation_matrixMethod.
julia
representation_matrix(a::AbsNumFieldOrderElem) -> ZZMatrix

Returns the representation matrix of the element a.

source


# representation_matrixMethod.
julia
representation_matrix(a::AbsNumFieldOrderElem, K::AbsSimpleNumField) -> FakeFmpqMat

Returns the representation matrix of the element a considered as an element of the ambient number field K. It is assumed that K is the ambient number field of the order of a.

source


# trMethod.
julia
tr(a::NumFieldOrderElem)

Returns the trace of a as an element of the base ring.

source


# normMethod.
julia
norm(a::NumFieldOrderElem)

Returns the norm of a as an element in the base ring.

source


# absolute_normMethod.
julia
absolute_norm(a::NumFieldOrderElem) -> ZZRingElem

Return the absolute norm as an integer.

source


# absolute_trMethod.
julia
absolute_tr(a::NumFieldOrderElem) -> ZZRingElem

Return the absolute trace as an integer.

source


# randMethod.
julia
rand(O::AbsSimpleNumFieldOrder, n::IntegerUnion) -> AbsNumFieldOrderElem

Computes a coefficient vector with entries uniformly distributed in {n,,1,0,1,,n} and returns the corresponding element of the order O.

source


# minkowski_mapMethod.
julia
minkowski_map(a::NumFieldOrderElem, abs_tol::Int) -> Vector{ArbFieldElem}

Returns the image of a under the Minkowski embedding. Every entry of the array returned is of type ArbFieldElem with radius less then 2^-abs_tol.

source


# conjugates_arbMethod.
julia
conjugates_arb(x::NumFieldOrderElem, abs_tol::Int) -> Vector{AcbFieldElem}

Compute the conjugates of x as elements of type AcbFieldElem. Recall that we order the complex conjugates σr+1(x),...,σr+2s(x) such that σi(x)=σi+s(x) for r+2ir+s.

Every entry y of the array returned satisfies radius(real(y)) < 2^-abs_tol, radius(imag(y)) < 2^-abs_tol respectively.

source


# conjugates_arb_logMethod.
julia
conjugates_arb_log(x::NumFieldOrderElem, abs_tol::Int) -> Vector{ArbFieldElem}

Returns the elements (log(|σ1(x)|),,log(|σr(x)|),,2log(|σr+1(x)|),,2log(|σr+s(x)|)) as elements of type ArbFieldElem radius less then 2^-abs_tol.

source


# t2Method.
julia
t2(x::NumFieldOrderElem, abs_tol::Int = 32) -> ArbFieldElem

Return the T2-norm of x. The radius of the result will be less than 2^-abs_tol.

source


# minpolyMethod.
julia
minpoly(a::AbsNumFieldOrderElem) -> ZZPolyRingElem

The minimal polynomial of a.

source


# charpolyMethod.
julia
charpoly(a::AbsNumFieldOrderElem) -> ZZPolyRingElem
charpoly(a::AbsNumFieldOrderElem, FlintZZ) -> ZZPolyRingElem

The characteristic polynomial of a.

source


# factorMethod.
julia
factor(a::AbsSimpleNumFieldOrderElem) -> Fac{AbsSimpleNumFieldOrderElem}

Computes a factorization of a into irreducible elements. The return value is a factorization fac, which satisfies a = unit(fac) * prod(p^e for (p, e) in fac).

The function requires that a is non-zero and that all prime ideals containing a are principal, which is for example satisfied if class group of the order of a is trivial.

source


# denominatorMethod.
julia
denominator(a::NumFieldElem, O::AbsSimpleNumFieldOrder) -> ZZRingElem

Returns the smallest positive integer k such that ka is contained in O.

source


# discriminantMethod.
julia
discriminant(B::Vector{NumFieldOrderElem})

Returns the discriminant of the family B of algebraic numbers, i.e. det((tr(B[i]B[j]))i,j)2.

source

julia
discriminant(E::EllipticCurve) -> FieldElem

Return the discriminant of E.

source

julia
discriminant(C::HypellCrv{T}) -> T

Compute the discriminant of C.

source

julia
discriminant(O::AlgssRelOrd)

Returns the discriminant of O.

source