Skip to content

Element operations

Creation

# genMethod.
julia
gen(L::SimpleNumField) -> NumFieldElem

Given a simple number field L=K[x]/(f) over K, this functions returns the class of x, which is the canonical primitive element of L over K.

source


# gensMethod.
julia
gens(L::NonSimpleNumField) -> Vector{NumFieldElem}

Given a non-simple number field L=K[x1,,xn]/(f1,,fn) over K, this functions returns the list x¯1,,x¯n.

source


Elements can also be created by specifying the coordinates with respect to the basis of the number field:

julia
    (L::number_field)(c::Vector{NumFieldElem}) -> NumFieldElem

Given a number field L/K of degree d and a vector c length d, this constructs the element a with coordinates(a) == c.

julia
julia> Qx, x = QQ["x"];

julia> K, a = number_field(x^2 - 2, "a");

julia> K([1, 2])
2*a + 1

julia> L, b = radical_extension(3, a, "b")
(Relative number field of degree 3 over number field, b)

julia> L([a, 1, 1//2])
1//2*b^2 + b + a
# quadratic_defectMethod.
julia
quadratic_defect(a::Union{NumFieldElem,Rational,QQFieldElem}, p) -> Union{Inf, PosInf}

Returns the valuation of the quadratic defect of the element a at p, which can either be prime object or an infinite place of the parent of a.

source


# hilbert_symbolMethod.
julia
hilbert_symbol(a::NumFieldElem, b::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Int

Returns the local Hilbert symbol (a,b)p.

source


# representation_matrixMethod.
julia
representation_matrix(a::NumFieldElem) -> MatElem

Returns the representation matrix of a, that is, the matrix representing multiplication with a with respect to the canonical basis of the parent of a.

source


# basis_matrixMethod.
julia
basis_matrix(v::Vector{NumFieldElem}) -> Mat

Given a vector v of n elements of a number field K of degree d, this function returns an n×d matrix with entries in the base field of K, where row i contains the coefficients of v[i] with respect of the canonical basis of K.

source


# coefficientsMethod.
julia
coefficients(a::SimpleNumFieldElem, i::Int) -> Vector{FieldElem}

Given a number field element a of a simple number field extension L/K, this function returns the coefficients of a, when expanded in the canonical power basis of L.

source


# coordinatesMethod.
julia
coordinates(x::NumFieldElem{T}) -> Vector{T}

Given an element x in a number field K, this function returns the coordinates of x with respect to the basis of K (the output of the 'basis' function).

source


# absolute_coordinatesMethod.
julia
absolute_coordinates(x::NumFieldElem{T}) -> Vector{T}

Given an element x in a number field K, this function returns the coordinates of x with respect to the basis of K over the rationals (the output of the absolute_basis function).

source


# coeffMethod.
julia
coeff(a::SimpleNumFieldElem, i::Int) -> FieldElem

Given a number field element a of a simple number field extension L/K, this function returns the i-th coefficient of a, when expanded in the canonical power basis of L. The result is an element of K.

source


# valuationMethod.
julia
valuation(a::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem

Computes the p-adic valuation of a, that is, the largest i such that a is contained in pi.

source


# torsion_unit_orderMethod.
julia
torsion_unit_order(x::AbsSimpleNumFieldElem, n::Int)

Given a torsion unit x together with a multiple n of its order, compute the order of x, that is, the smallest kZ1 such that xk=1.

It is not checked whether x is a torsion unit.

source


# trMethod.
julia
tr(a::NumFieldElem) -> NumFieldElem

Returns the trace of an element a of a number field extension L/K. This will be an element of K.

source


# absolute_trMethod.
julia
absolute_tr(a::NumFieldElem) -> QQFieldElem

Given a number field element a, returns the absolute trace of a.

source


# algebraic_splitMethod.
julia
algebraic_split(a::AbsSimpleNumFieldElem) -> AbsSimpleNumFieldElem, AbsSimpleNumFieldElem

Writes the input as a quotient of two "small" algebraic integers.

source


Conjugates

# conjugatesMethod.
julia
conjugates(x::AbsSimpleNumFieldElem, C::AcbField) -> Vector{AcbFieldElem}

Compute the conjugates of x as elements of type AcbFieldElem. Recall that we order the complex conjugates σr+1(x),...,σr+2s(x) such that σi(x)=σi+s(x) for r+1ir+s.

Let p be the precision of C, then every entry y of the vector returned satisfies radius(real(y)) < 2^-p and radius(imag(y)) < 2^-p respectively.

source


# conjugatesMethod.
julia
conjugates(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}

Compute the conjugates of x as elements of type AcbFieldElem. Recall that we order the complex conjugates σr+1(x),...,σr+2s(x) such that σi(x)=σi+s(x) for r+1ir+s.

Every entry y of the vector returned satisfies radius(real(y)) < 2^-abs_tol and radius(imag(y)) < 2^-abs_tol respectively.

source


# conjugates_logMethod.
julia
conjugates_arb_log(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}

Returns the elements (log(|σ1(x)|),,log(|σr(x)|),,2log(|σr+1(x)|),,2log(|σr+s(x)|)) as elements of type ArbFieldElem with radius less then 2^-abs_tol.

source


# conjugates_realMethod.
julia
conjugates_arb_real(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}

Compute the real conjugates of x as elements of type ArbFieldElem.

Every entry y of the array returned satisfies radius(y) < 2^-abs_tol.

source


# conjugates_complexMethod.
julia
conjugates_complex(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}

Compute the complex conjugates of x as elements of type AcbFieldElem. Recall that we order the complex conjugates σr+1(x),...,σr+2s(x) such that σi(x)=σi+s(x) for r+1ir+s.

Every entry y of the array returned satisfies radius(real(y)) < 2^-abs_tol and radius(imag(y)) < 2^-abs_tol.

source


# conjugates_arb_log_normaliseMethod.
julia
conjugates_arb_log_normalise(x::AbsSimpleNumFieldElem, p::Int = 10)
conjugates_arb_log_normalise(x::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, p::Int = 10)

The "normalised" logarithms, i.e. the array cilog|x(i)|1/nlog|N(x)|, so the (weighted) sum adds up to zero.

source


# minkowski_mapMethod.
julia
minkowski_map(a::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}

Returns the image of a under the Minkowski embedding. Every entry of the array returned is of type ArbFieldElem with radius less then 2^(-abs_tol).

source


Predicates

# is_integralMethod.
julia
is_integral(a::NumFieldElem) -> Bool

Returns whether a is integral, that is, whether the minimal polynomial of a has integral coefficients.

source


# is_torsion_unitMethod.
julia
is_torsion_unit(x::AbsSimpleNumFieldElem, checkisunit::Bool = false) -> Bool

Returns whether x is a torsion unit, that is, whether there exists n such that xn=1.

If checkisunit is true, it is first checked whether x is a unit of the maximal order of the number field x is lying in.

source


# is_local_normMethod.
julia
is_local_norm(L::NumField, a::NumFieldElem, P)

Given a number field L/K, an element aK and a prime ideal P of K, returns whether a is a local norm at P.

The number field L/K must be a simple extension of degree 2.

source


# is_norm_divisibleMethod.
julia
is_norm_divisible(a::AbsSimpleNumFieldElem, n::ZZRingElem) -> Bool

Checks if the norm of a is divisible by n, assuming that the norm of a is an integer.

source


# is_normMethod.
julia
is_norm(K::AbsSimpleNumField, a::ZZRingElem; extra::Vector{ZZRingElem}) -> Bool, AbsSimpleNumFieldElem

For a ZZRingElem a, try to find TK s.th. N(T)=a holds. If successful, return true and T, otherwise false and some element. In \testtt{extra} one can pass in additional prime numbers that are allowed to occur in the solution. This will then be supplemented. The element will be returned in factored form.

source


Invariants

# normMethod.
julia
norm(a::NumFieldElem) -> NumFieldElem

Returns the norm of an element a of a number field extension L/K. This will be an element of K.

source


# absolute_normMethod.
julia
absolute_norm(a::NumFieldElem) -> QQFieldElem

Given a number field element a, returns the absolute norm of a.

source


# minpolyMethod.
julia
minpoly(a::NumFieldElem) -> PolyRingElem

Given a number field element a of a number field K, this function returns the minimal polynomial of a over the base field of K.

source


# absolute_minpolyMethod.
julia
absolute_minpoly(a::NumFieldElem) -> PolyRingElem

Given a number field element a of a number field K, this function returns the minimal polynomial of a over the rationals Q.

source


# charpolyMethod.
julia
charpoly(a::NumFieldElem) -> PolyRingElem

Given a number field element a of a number field K, this function returns the characteristic polynomial of a over the base field of K.

source


# absolute_charpolyMethod.
julia
absolute_charpoly(a::NumFieldElem) -> PolyRingElem

Given a number field element a of a number field K, this function returns the characteristic polynomial of a over the rationals Q.

source


# normMethod.
julia
norm(a::NumFieldElem, k::NumField) -> NumFieldElem

Returns the norm of an element a of a number field L with respect to a subfield k of L. This will be an element of k.

source